
Component vs. Component:
Why We Need More Than One Definition

Bernhard Gr̈one, Andreas Kn̈opfel, Peter Tabeling

Hasso–Plattner–Institute for IT–Systems Engineering
E-mail:{groene,knoepfel,tabeling }@hpi.uni-potsdam.de

Abstract

This paper discusses the different meanings of the word
component in various contexts of software engineering. To
overcome this ambiguity we propose to distinguish between
two fundamental meanings of the term which should be em-
phasized by using different names.

1. Introduction

Developing complex information processing systems is
a complex task consuming many resources with regard to
man–power, time and money. Much effort is spent in
creating the software describing those systems. Object–
orientation came with the promise to ease reuse, so classes
that were developed for one system could also be used for
different systems. If carefully designed, this may work, but
often objects and classes—as defined at the level of pro-
gramming languages—are units much too small for efficient
reuse.

Hence, there was a growing demand for higher–level
constructs which were calledcomponents. Following this
thought, a new system is developed by mainly combin-
ing prebuilt components. The concept appeared promising
and everybody had an intuitive understanding of it. Today,
many software products and publications about software en-
gineering and architecture promote the concept.

Therefore, Model Based Development (MBD) should
support the component–based approach. Yet, there are dif-
ferent meanings ofcomponentin the context of software
engineering that may cause severe misunderstandings and
hamper systematic application.

2. The Problem

In its general meaning,componentdenotes a part of
something that has been composed. Obviously, a more pre-
cise definition is needed in the context of software systems.
The popular book “Component software” [10] defines three
characteristic properties of a component: It is a unit of inde-
pendent deployment, it is a unit of third–party composition
and has no (externally) observable state. “It is required that
the component cannot be distinguished from copies of its
own.” Yet, the explanation is contradictory:

• In the definition, a component cannot have an observ-
able state.

• As an example for a component a database server is
introduced. Such a server, obviously, offers the service
to store and provide data, i.e. to manage some state
which is observable by queries.

• Addressing this contradiction, the author refers to the
component as theprogram describing the database
server. The server is called an instance or the database
object, resp.

Following this discussion, components can only be
(reusable and prebuilt) pieces of program code.

Architecture description languages (ADLs) are used to
describe systems in terms of interacting system compo-
nents. These components represent the building blocks
of the conceptual compositional structure of the system.
ROOM is an example for such an ADL [9]. Variants of
this approach promote a system view with components and
connectors [3].

In this view, components are obviously something dif-
ferent than code, as code alone shows no behavior. A piece
of code is some part of a formal system description which
is processed by a general purpose machine which becomes
the system being described [4].



In other publications, a component can be almost any-
thing. In [1], we read “Do the components consist of
processes, programs, or both? [. . . ] Is a software com-
ponent an object? A library? A database? A commercial
product? It can be any of these things and more.”

This ambiguity and fuzziness of the termcomponentun-
necessarily complicates the understanding of many valuable
contributions about component–based approaches and hin-
ders progress in this field. If a component is nothing else
but a part of a composition, then the fundamental question
arises: Which kind of composition?

3. Solution

3.1. Two views—two terms

We should (at least) distinguish two important views:
The system viewand thesoftware view. Consequently, in
the context of information processing system, at least two
types of components should be distinguished:

• System components

• Software components

The essence of this distinction is the difference between
a thing and the description of that thing, like between
Africa and a book about Africa, or between an information
processing system and the software describing this system.
(When software is executed by a machine, that machine be-
haves as described by the program instructions, thus becom-
ing the described system.) Both, the described thing and the
description, are inherently different things.

3.2. System components

If we look at a system with its behavior and runtime
structures, a component is an active part of the (abstract)
system which exists at runtime; a component provides a de-
fined functionality and communicates with other parts of the
system. All parts of the system may have their own state.

This system view is typical for Architecture Description
Languages (ADLs). Some approaches favor the distinction
of different types of system components. For instance [2, 7]
describe the (conceptual) structure of a system in terms of
components (and connectors). Here,componentdescribes a
primarily information processing part of the system, while
a connectorhas the task to connect components by com-
municating, filtering, buffering and even coordinating. In a

similar way, FMC [5, 12] separates active (agents) and pas-
sive system components (channels and storages). Agents
process and communicate information, while channels and
storages are used to transport or store this information in the
system.

3.3. Software components

Component–based development has a different view on
components: Here, a component is a deployable software
unit which is relevant at build–time (for example a library),
or which may be loaded into memory at runtime and be
processed by a processor or a virtual machine resp. In any
case, it can be treated as a passive artifact [10].

3.4. Why the distinction is important

It is important, because software components and sys-
tem components do not necessarily map to each other. The
structure of the described entity may be very different to the
structure of the description. In the context of software sys-
tems, this results from the different purposes of the different
types of components: System components provide a certain
functionality, defined interfaces and protocols for their com-
munication partners. Software components should support
deployment, maintenance, configuration and reuse.

In object–oriented software, a class corresponds to a
software module, but the functional aspects of a system
component may be dispersed on various classes. A de-
tailed description of the various mappings between concep-
tual system components and objects can be found in [6]
and [11]. Furthermore, in the component world more than
one instance of a component (’multiple fork of one soft-
ware component’) is possible. Some software components
have no corresponding system component—they just en-
hance the programming language, as for example a library
for mathematical calculations.

3.5. Related approaches

A similar conceptual distinction can be found in other
publications. Yet, in our opinion, the criteria of distinction
and the terms are less apparent.

With version 2, the Unified Modeling Language [8] dis-
tinguishescomponentsand artifacts. An artifact is “the
specification of a physical piece of information that is used
or produced by a software development process, or by de-
ployment and operation of a system”, i.e. a piece of sys-
tem description. Components seem to correspond to system



components, yet the definition in the current UML2 spec-
ification leaves some questions: “Component: a modular
part of a system that encapsulates its contents and whose
manifestation is replaceable within its environment. [...] As
such, a component serves as a type”, but also “a compo-
nent is a self contained unit that encapsulates the state and
behavior of a number of classifiers.” A classifier is a clas-
sification of instances, like a class, an interface. In UML,
a classifier describes a set of objects. From that point of
view, it would be a piece of description. Yet, descriptions
encapsulate design decisions, not state or behavior.

Hofmeister, Nord and Soni [3] distinguish different
kinds of components, as well: In context of theconceptual
view, they identifyconceptual componentsandconnectors,
while sourceanddeployment componentsare introduced in
thecode view. Conceptual components and connectors cor-
respond to system components, while source and deploy-
ment components are software components.

4. Conclusion

One single definition of the termcomponentdoes not fit
for different contexts which are still close enough to be con-
fused with each other. For each context, i.e. for system and
software (as a description), there should be a clear defini-
tion of componentand a term that is concise enough to be
understood without any additional definition. The approach
of [3] is concise, but requires additional knowledge about
the specific meaning of the different views. UML2 compo-
nents and artifacts appear liable to be misunderstood. For
that reason we favor the termssystem componentsandsoft-
ware componentsas first–order categories.

Model–based development requires support of various
aspects and views. One key to resolve the conflicts bet-
ween them is a clear separation and definition of the differ-
entcomponentterms.

References

[1] L. Bass, P. Clements, and R. Kazman.Software Architecture
in Practice. Addison-Wesley, 1998.

[2] P. C. Clements. A survey of architecture description lan-
guages. InIWSSD ’96: Proceedings of the 8th International
Workshop on Software Specification and Design, page 16.
IEEE Computer Society, March 1996.

[3] C. Hofmeister, R. Nord, and D. Soni.Applied Software Ar-
chitecture. Addison-Wesley, 2000.

[4] M. Jackson. The world and the machine. InProceedings of
the 17th International Conference on Software Engineering,
pages 283–292, April 1995.

[5] F. Keller, P. Tabeling, R. Apfelbacher, B. Gröne, A. Kn̈opfel,
R. Kugel, and O. Schmidt. Improving knowledge transfer
at the architectural level: Concepts and notations. InPro-
ceedings of The 2002 International Conference on Software
Engineering Research and Practice, Juni 2002.

[6] W. Kleis. Konzepte zur verständlichen Beschreibung objek-
torientierter Frameworks. Shaker Verlag, 1999.

[7] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture description
languages. IEEE Transactions on Software Engineering,
16(1):70–93, 2000.

[8] OMG. Uml 2.0 superstructure specification, 2003.
http://www.omg.org/.

[9] B. Selic, G. Gullekson, and P. Ward.Real-Time Object-
Oriented Modeling. John Wiley & Sons, 2 edition, 1994.

[10] C. Szyperski.Component Software - Beyond object-oriented
programming. Addison-Wesley, 2 edition, 2002.

[11] P. Tabeling and B. Gröne. Mappings between object-
oriented technology and architecture-based models. InPro-
ceedings of the International Conference on Software Engi-
neering Research and Practice, SERP ’03, pages 568–574,
June 2003.

[12] S. Wendt and F. Keller. Fmc: An approach towards
architecture-centric system development. InProceedings
of 10th IEEE Symposium and Workshops on Engineering of
Computer Based Systems, Huntsville Alabama USA (2003),
pages 173–182, April 2003.


